Materials Research Facility


MRF logo
UKAEA logo


Updates 28th April 2023:


  • As part of FaSCiNATe at the MRF, the following pieces of scientific equipment are now available: the in-situ heating stage and optics for the X-ray Diffractometer (XRD) and in-situ micro-mechanical test stage for the SEM/PFIB. These are available as part of call 12 of the NNUF access scheme. Both pieces of equipment are being commissioned with non-radioactive samples, anticipating use of radioactive samples from early summer 2023.


  • As well as the MRF's Plasma Focused Ion Beam (PFIB), upgrades to the existing Gallium Focused Ion Beam (GaFIB) are also available as part of call 12 of the NNUF access scheme. The GaFIB upgrades include an Electron Back Scatter Diffraction (EBSD) detector, for site-specific sample preparation as well as monitoring of sample position during preparation, plus a cryo-stage enabling low-temperature milling to prevent artefacts during sample preparation. The cryo-stage includes a vacuum-transfer system for protective transfer of air-sensitive samples to other facilities. The PFIB is being commissioned for use with radioactive samples and will be available as such for call 12, and the GaFIB upgrades are ready for use with radioactive samples in this call. 



Project lead: Dr. Steven Van Boxel
The UKAEA’s Materials Research Facility (MRF Brochure) at Culham in Oxfordshire specialises in processing and analysing radioactive materials, to support research in fission, fusion and particle accelerator design. We can take material that is far too radioactive for a university laboratory but does not need to be handled at a nuclear licensed site. The MRF has been funded by EPSRC, through the NNUF and Henry Royce Institute initiatives, as well directly by Government.



Researcher at computer

Radioactive sample preparation using FIB


MRF hot cell wall with operator

Hot cell wall with operator using manipulator arms


Operator using glove box at MRF

Operator and manipulator arms as seen from inside the hot cell


The materials inside both fission and fusion reactors face a unique combination of high temperatures and fast-moving neutrons. Developing materials that can survive for long periods in these conditions is therefore a high priority for the nuclear industry.
Data from MRF helps researchers understand the properties of materials for:

•    Existing nuclear power stations and designs for future, more efficient power stations

•    Fusion reactors

•    Particle accelerators – for targets and other components that operate in an extreme environment.

In MRF we can cut and prepare samples in hot cells, using remote handling systems, up to TBq levels (Cobalt-60 equivalent). The resulting smaller specimens, which have much reduced radiation levels, can then be analysed on site in
shielded enclosures (up to GBq levels) or at university laboratories. MRF uses advanced scientific methods and specialist equipment to perform microstructural analysis, mechanical testing and thermo-physical characterisation, and
has a range of equipment to prepare samples for these tests. MRF also has an experimental area for tritium, beryllium and other hazardous materials.



Scientific equipment can be operated remotely from the MRF control room by users after training. The training will allow the user to operate the equipment safely and focus on the science that needs to be done, with support available from in-house experts. 

For more information on the equipment and the MRF see or use the contact form on the MRF website.



The MRF is open for research, within appropriate COVID-19 control measures. Within those controls we are able to accommodate external users, either in person or by MRF scientists delivering experiments on behalf of externals. In the first instance please do reach out to the MRF team to discuss requirements.



NNUF funded user access scheme for the MRF

As a first step, contact the MRF for a discussion about the practical feasibility of your proposed research project. Then, you will need to complete a simple NNUF application form. When doing so, please upload an email exchange between you and a member of staff at the MRF confirming the feasibility of your proposed research. Please see the access page of this website for more detail about the NNUF funded user access scheme.

Text and images © UKAEA.